Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(11): pgad348, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38024403

RESUMO

Natural genetic variation has facilitated the identification of genes underlying complex traits such as stress tolerances. We here evaluated the long-term (L-) heat tolerance (37°C for 5 days) of 174 Arabidopsis thaliana accessions and short-term (S-) heat tolerance (42°C, 50 min) of 88 accessions and found extensive variation, respectively. Interestingly, L-heat-tolerant accessions are not necessarily S-heat tolerant, suggesting that the tolerance mechanisms are different. To elucidate the mechanisms underlying the variation, we performed a chromosomal mapping using the F2 progeny of a cross between Ms-0 (a hypersensitive accession) and Col-0 (a tolerant accession) and found a single locus responsible for the difference in L-heat tolerance between them, which we named Long-term Heat Tolerance 1 (LHT1). LHT1 is identical to MAC7, which encodes a putative RNA helicase involved in mRNA splicing as a component of the MOS4 complex. We found one amino acid deletion in LHT1 of Ms-0 that causes a loss of function. Arabidopsis mutants of other core components of the MOS4 complex-mos4-2, cdc5-1, mac3a mac3b, and prl1 prl2-also showed hypersensitivity to L-heat stress, suggesting that the MOS4 complex plays an important role in L-heat stress responses. L-heat stress induced mRNA processing-related genes and compromised alternative splicing. Loss of LHT1 function caused genome-wide detrimental splicing events, which are thought to produce nonfunctional mRNAs that include retained introns under L-heat stress. These findings suggest that maintaining proper alternative splicing under L-heat stress is important in the heat tolerance of A. thaliana.

2.
Plant Mol Biol ; 111(1-2): 189-203, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36306001

RESUMO

De novo genes created in the plant mitochondrial genome have frequently been transferred into the nuclear genome via intergenomic gene transfer events. Therefore, plant mitochondria might be a source of de novo genes in the nuclear genome. However, the functions of de novo genes originating from mitochondria and the evolutionary fate remain unclear. Here, we revealed that an Arabidopsis thaliana specific small coding gene derived from the mitochondrial genome regulates floral transition. We previously identified 49 candidate de novo genes that induce abnormal morphological changes on overexpression. We focused on a candidate gene derived from the mitochondrial genome (sORF2146) that encodes 66 amino acids. Comparative genomic analyses indicated that the mitochondrial sORF2146 emerged in the Brassica lineage as a de novo gene. The nuclear sORF2146 emerged following an intergenomic gene transfer event in the A. thaliana after the divergence between Arabidopsis and Capsella. Although the nuclear and mitochondrial sORF2146 sequences are the same in A. thaliana, only the nuclear sORF2146 is transcribed. The nuclear sORF2146 product is localized in mitochondria, which may be associated with the pseudogenization of the mitochondrial sORF2146. To functionally characterize the nuclear sORF2146, we performed a transcriptomic analysis of transgenic plants overexpressing the nuclear sORF2146. Flowering transition-related genes were highly regulated in the transgenic plants. Subsequent phenotypic analyses demonstrated that the overexpression and knockdown of sORF2146 in transgenic plants resulted in delayed and early flowering, respectively. These findings suggest that a lineage-specific de novo gene derived from mitochondria has an important regulatory effect on floral transition.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Arabidopsis/metabolismo , Genoma de Planta , Brassica/genética , Perfilação da Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/metabolismo
3.
Genome Res ; 31(6): 1060-1068, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34006571

RESUMO

DNA methylation is an important factor regulating gene expression in organisms. However, whether DNA methylation plays a key role in adaptive evolution is unknown. Here, we show evidence of naturally selected DNA methylation in Arabidopsis thaliana In comparison with single nucleotide polymorphisms, three types of methylation-methylated CGs (mCGs), mCHGs, and mCHHs-contributed highly to variable gene expression levels among an A thaliana population. Such variably expressed genes largely affect a large variation of specialized metabolic quantities. Among the three types of methylations, only mCGs located in promoter regions of genes associated with specialized metabolites show a selective sweep signature in the A thaliana population. Thus, naturally selected mCGs appear to be key mutations that cause the expressional diversity associated with specialized metabolites during plant evolution.


Assuntos
Arabidopsis , Epigenômica , Genoma de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Mutação
4.
Plants (Basel) ; 10(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921675

RESUMO

Excess soluble iron in acidic soil is an unfavorable environment that can reduce rice production. To better understand the tolerance mechanism and identify genetic loci associated with iron toxicity (FT) tolerance in a highly diverse indica Thai rice population, a genome-wide association study (GWAS) was performed using genotyping by sequencing and six phenotypic data (leaf bronzing score (LBS), chlorophyll content, shoot height, root length, shoot biomass, and root dry weight) under both normal and FT conditions. LBS showed a high negative correlation with the ratio of chlorophyll content and shoot biomass, indicating the FT-tolerant accessions can regulate cellular homeostasis when encountering stress. Sixteen significant single nucleotide polymorphisms (SNPs) were identified by association mapping. Validation of candidate SNP using other FT-tolerant accessions revealed that SNP:2_21262165 might be associated with tolerance to FT; therefore, it could be used for SNP marker development. Among the candidate genes controlling FT tolerance, RAR1 encodes an innate immune responsive protein that links to cellular redox homeostasis via interacting with abiotic stress-responsive Hsp90. Future research may apply the knowledge obtained from this study in the molecular breeding program to develop FT-tolerant rice varieties.

5.
Mol Biol Evol ; 38(4): 1447-1459, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33290522

RESUMO

Gene duplication is a major mechanism to create new genes. After gene duplication, some duplicated genes undergo functionalization, whereas others largely maintain redundant functions. Duplicated genes comprise various degrees of functional diversification in plants. However, the evolutionary fate of high and low diversified duplicates is unclear at genomic scale. To infer high and low diversified duplicates in Arabidopsis thaliana genome, we generated a prediction method for predicting whether a pair of duplicate genes was subjected to high or low diversification based on the phenotypes of knock-out mutants. Among 4,017 pairs of recently duplicated A. thaliana genes, 1,052 and 600 are high and low diversified duplicate pairs, respectively. The predictions were validated based on the phenotypes of generated knock-down transgenic plants. We determined that the high diversified duplicates resulting from tandem duplications tend to have lineage-specific functions, whereas the low diversified duplicates produced by whole-genome duplications are related to essential signaling pathways. To assess the evolutionary impact of high and low diversified duplicates in closely related species, we compared the retention rates and selection pressures on the orthologs of A. thaliana duplicates in two closely related species. Interestingly, high diversified duplicates resulting from tandem duplications tend to be retained in multiple lineages under positive selection. Low diversified duplicates by whole-genome duplications tend to be retained in multiple lineages under purifying selection. Taken together, the functional diversities determined by different duplication mechanisms had distinct effects on plant evolution.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma de Planta , Modelos Genéticos , Arabidopsis , Modelos Lineares , Plantas Geneticamente Modificadas
6.
Front Plant Sci ; 10: 1567, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850041

RESUMO

There is considerable diversity in the specialized metabolites within a single plant species (intra-species) and among different plant species (inter-species). The functional divergence associated with gene duplications largely contributes to the inter-species diversity in the specialized metabolites, whereas the intra-species diversity is due to gene dosage changes via gene duplications [i.e., copy number variants (CNVs)] at the intra-species level of evolution. This is because CNVs are thought to undergo associated with less functional divergence at the intra-species level of evolution. However, functional divergence caused by CNVs may induce specialized metabolite diversity at the intra-species and inter-species levels of evolution. We herein discuss the functional divergence of CNVs in metabolic quantitative trait genes (mQTGs). We focused on 5,654 previously identified mQTGs in 270 Arabidopsis thaliana accessions. The ratio of nonsynonymous to synonymous variations tends to be higher for mQTGs with CNVs than for mQTGs without CNVs within A. thaliana accessions, suggesting that CNVs are responsible for the functional divergence among mQTGs at the intra-species level of evolution. To evaluate the contribution of CNVs to inter-species diversity, we calculated the ratio of nonsynonymous to synonymous substitutions in the Arabidopsis lineage. The ratio tends to be higher for the mQTGs with CNVs than for the mQTGs without CNVs. Additionally, we determined that mQTGs with CNVs are subject to positive selection in the Arabidopsis lineage. Our data suggest that CNVs are closely related to functional divergence contributing to adaptations via the production of diverse specialized metabolites at the intra-species and inter-species levels of evolution.

7.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462570

RESUMO

In various positive-sense single-stranded RNA viruses, a low-fidelity viral RNA-dependent RNA polymerase (RdRp) confers attenuated phenotypes by increasing the mutation frequency. We report a negative-sense single-stranded RNA virus RdRp mutant strain with a mutator phenotype. Based on structural data of RdRp, rational targeting of key residues, and screening of fidelity variants, we isolated a novel low-fidelity mutator strain of influenza virus that harbors a Tyr82-to-Cys (Y82C) single-amino-acid substitution in the PB1 polymerase subunit. The purified PB1-Y82C polymerase indeed showed an increased frequency of misincorporation compared with the wild-type PB1 in an in vitro biochemical assay. To further investigate the effects of position 82 on PB1 polymerase fidelity, we substituted various amino acids at this position. As a result, we isolated various novel mutators other than PB1-Y82C with higher mutation frequencies. The structural model of influenza virus polymerase complex suggested that the Tyr82 residue, which is located at the nucleoside triphosphate entrance tunnel, may influence a fidelity checkpoint. Interestingly, although the PB1-Y82C variant replicated with wild-type PB1-like kinetics in tissue culture, the 50% lethal dose of the PB1-Y82C mutant was 10 times lower than that of wild-type PB1 in embryonated chicken eggs. In conclusion, our data indicate that the Tyr82 residue of PB1 has a crucial role in regulating polymerase fidelity of influenza virus and is closely related to attenuated pathogenic phenotypes in vivoIMPORTANCE Influenza A virus rapidly acquires antigenic changes and antiviral drug resistance, which limit the effectiveness of vaccines and drug treatments, primarily owing to its high rate of evolution. Virus populations formed by quasispecies can contain resistance mutations even before a selective pressure is applied. To study the effects of the viral mutation spectrum and quasispecies, high- and low-fidelity variants have been isolated for several RNA viruses. Here, we report the discovery of a low-fidelity RdRp variant of influenza A virus that contains a substitution at Tyr82 in PB1. Viruses containing the PB1-Y82C substitution showed growth kinetics and viral RNA synthesis levels similar to those of the wild-type virus in cell culture; however, they had significantly attenuated phenotypes in a chicken egg infection experiment. These data demonstrated that decreased RdRp fidelity attenuates influenza A virus in vivo, which is a desirable feature for the development of safer live attenuated vaccine candidates.


Assuntos
Vírus da Influenza A/genética , Mutação , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Cães , Células HEK293 , Humanos , Vírus da Influenza A/enzimologia , Vírus da Influenza A/metabolismo , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Modelos Moleculares , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Replicação Viral/genética
8.
Retrovirology ; 15(1): 72, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400920

RESUMO

BACKGROUND: Among human T cell leukemia virus type 1 (HTLV-1)-infected individuals, there is an association between HTLV-1 tax subgroups (subgroup-A or subgroup-B) and the risk of HAM/TSP in the Japanese population. To investigate the role of HTLV-1 subgroups in viral pathogenesis, we studied the functional difference in the subgroup-specific viral transcriptional regulators Tax and HBZ using microarray analysis, reporter gene assays, and evaluation of viral-host protein-protein interaction. RESULTS: (1) Transcriptional changes in Jurkat Tet-On human T-cells that express each subgroup of Tax or HBZ protein under the control of an inducible promoter revealed different target gene profiles; (2) the number of differentially regulated genes induced by HBZ was 2-3 times higher than that induced by Tax; (3) Tax and HBZ induced the expression of different classes of non-coding RNAs (ncRNAs); (4) the chemokine CXCL10, which has been proposed as a prognostic biomarker for HAM/TSP, was more efficiently induced by subgroup-A Tax (Tax-A) than subgroup-B Tax (Tax-B), in vitro as well as in unmanipulated (ex vivo) PBMCs obtained from HAM/TSP patients; (5) reporter gene assays indicated that although transient Tax expression in an HTLV-1-negative human T-cell line activated the CXCL10 gene promoter through the NF-κB pathway, there was no difference in the ability of each subgroup of Tax to activate the CXCL10 promoter; however, (6) chromatin immunoprecipitation assays showed that the ternary complex containing Tax-A is more efficiently recruited onto the promoter region of CXCL10, which contains two NF-κB binding sites, than that containing Tax-B. CONCLUSIONS: Our results indicate that different HTLV-1 subgroups are characterized by different patterns of host gene expression. Differential expression of pathogenesis-related genes by subgroup-specific Tax or HBZ may be associated with the onset of HAM/TSP.


Assuntos
Produtos do Gene tax/genética , Infecções por HTLV-I/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Paraparesia Espástica Tropical/genética , Transativadores/genética , Adulto , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linhagem Celular , Feminino , Vírus Linfotrópico T Tipo 1 Humano/classificação , Humanos , Células Jurkat , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Paraparesia Espástica Tropical/virologia , RNA não Traduzido/genética , Proteínas dos Retroviridae/genética , Fatores de Risco , Transcriptoma , Proteínas Virais/genética
9.
Mol Biol Evol ; 34(12): 3111-3122, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961930

RESUMO

Lineage-specific gene duplications contribute to a large variation in specialized metabolites among different plant species. There is also considerable variability in the specialized metabolites within a single plant species. However, it is unclear whether copy number variations (CNVs) derived from gene duplication events contribute to the diversity of specialized metabolites within species. We identified metabolome quantitative trait genes (mQTGs) associated with quantitative metabolite variations and examined the relationship between mQTGs and CNVs. We obtained 1,335 specialized metabolite signals from 53 worldwide A. thaliana accessions using liquid chromatography-quadrupole time-of-flight mass spectrometry. In this study, genes associated with specialized metabolites were inferred by either a generally authorized genome-wide association study (GWAS) approach or a novel analysis of the association between gene expression and metabolite accumulation. Genes qualified by both analyses are defined to be mQTGs. The integrated method enabled us to detect mQTGs with a low false positive rate (=5.71 × 10-4). We also identified 5,654 genes associated with 1,335 specialized metabolites. Of these genes, 4.4% were affected by CNVs, which was more than expected (χ2 test: P < 0.01). This result suggests that CNVs contribute to variations in specialized metabolites within a species. To assess the contribution of CNVs to adaptive evolution in A. thaliana, we examined the selective sweeps around the mQTGs. We observed that the mQTGs with CNVs tended to undergo selective sweeps. These observations imply that variations in specialized metabolites caused by CNVs contribute to the adaptive evolution of A. thaliana.


Assuntos
Arabidopsis/genética , Variações do Número de Cópias de DNA/genética , Metaboloma/genética , Mapeamento Cromossômico/métodos , Evolução Molecular , Duplicação Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Transcriptoma/genética
10.
Breed Sci ; 67(3): 268-276, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28744180

RESUMO

Radish (Raphanus sativus L. var. sativus), a widely cultivated root vegetable crop, possesses a large sink organ (the root), implying that photosynthetic activity in radish can be enhanced by altering both the source and sink capacity of the plant. However, since radish is a self-incompatible plant, improved mutation-breeding strategies are needed for this crop. TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful method used for reverse genetics. In this study, we developed a new TILLING strategy involving a two-step mutant selection process for mutagenized radish plants: the first selection is performed to identify a BC1M1 line, that is, progenies of M1 plants crossed with wild-type, and the second step is performed to identify BC1M1 individuals with mutations. We focused on Rubisco as a target, since Rubisco is the most abundant plant protein and a key photosynthetic enzyme. We found that the radish genome contains six RBCS genes and one pseudogene encoding small Rubisco subunits. We screened 955 EMS-induced BC1M1 lines using our newly developed TILLING strategy and obtained six mutant lines for the six RsRBCS genes, encoding proteins with four different types of amino acid substitutions. Finally, we selected a homozygous mutant and subjected it to physiological measurements.

11.
Gene ; 552(2): 239-45, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25241383

RESUMO

When a population size is reduced, genetic drift may fix slightly deleterious mutations, and an increase in nonsynonymous substitution is expected. It has been suggested that past aridity has seriously affected and decreased the populations of cichlid fishes in Lake Victoria, while geographical studies have shown that the water levels in Lake Tanganyika and Lake Malawi have remained fairly constant. The comparably stable environments in the latter two lakes might have kept the populations of cichlid fishes large enough to remove slightly deleterious mutations. The difference in the stability of cichlid fish population sizes between Lake Victoria and the Lakes Tanganyika and Malawi is expected to have caused differences in the nonsynonymous/synonymous ratio, ω (=dN/dS), of the evolutionary rate. Here, we estimated ω and compared it between the cichlids of the three lakes for 13 mitochondrial protein-coding genes using maximum likelihood methods. We found that the lineages of the cichlids in Lake Victoria had a significantly higher ω for several mitochondrial loci. Moreover, positive selection was indicated for several codons in the mtDNA of the Lake Victoria cichlid lineage. Our results indicate that both adaptive and slightly deleterious molecular evolution has taken place in the Lake Victoria cichlids' mtDNA genes, whose nonsynonymous sites are generally conserved.


Assuntos
Ciclídeos/genética , DNA Mitocondrial/genética , Proteínas de Peixes/genética , Substituição de Aminoácidos , Animais , Genética Populacional , Lagos , Funções Verossimilhança , Mutação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...